
Geographic Information Technology Training Alliance (GITTA) presents:

Databases

Responsible persons:

Susanne Bleisch

Databases

http://www.gitta.info - Version from: 12.7.2007 1

Content

1. Introduction to Database Systems ... 5
1.1 Definition of Terms ... 6

1.1.1 Data versus Information .. 7
1.1.2 The Components of an Information System .. 8

1.2 Characteristics of the Database Approach .. 9
1.2.1 Concurrent Use ... 10
1.2.2 Structured and Described Data ... 11
1.2.3 Separation of Data and Applications ... 12
1.2.4 Data Integrity ... 13
1.2.5 Transactions .. 14
1.2.6 Data Persistence ... 15
1.2.7 Data Views .. 16

1.3 Example Applications ... 17
1.3.1 Management of Bank Accounts .. 18
1.3.2 Timetable Informationsystem .. 19
1.3.3 Library Catalogue .. 20
1.3.4 Central Geodata Warehouse ... 22
1.3.5 Exercise ... 24

1.4 Advantages and Disadvantages .. 25
1.4.1 Comparison DBS versus file based ... 26
1.4.2 Advantages of a DBMS ... 27
1.4.3 Disadvantages of a DBMS .. 28

1.5 Tasks ... 29
1.6 Summary .. 30
1.7 Recommended Reading .. 31
1.8 Glossary ... 32
1.9 Bibliography ... 34

2. Database Systems: Concepts and Architectures .. 35
2.1 Database Models, Schemes and Instances ... 36

2.1.1 Database Models .. 37
2.1.2 Database Schemes and Database Instances ... 39
2.1.3 Comparison of Spatial Models and Database Models .. 41

2.2 DBMS-Architecture and Data Independence ... 42
2.2.1 Three-Schemes Architecture ... 43
2.2.2 Data Independence ... 45

2.3 Database Languages and Database Interfaces ... 46
2.3.1 Database Languages .. 47
2.3.2 Database Interfaces .. 48
2.3.3 User Interfaces .. 49

2.4 Tasks ... 52
2.5 Exercise Data Independence ... 53
2.6 Summary .. 54
2.7 Recommended Reading .. 55
2.8 Glossary ... 56

Databases

http://www.gitta.info - Version from: 12.7.2007 2

2.9 Bibliography ... 57
3. The relational database model .. 58

3.1 Concept of the relational model ... 59
3.1.1 Data organization in a relational data model ... 60
3.1.2 Definitionen ... 61

3.2 Transforming an ERM to a relational database scheme .. 64
3.2.1 ERM concepts ... 65
3.2.2 Rule 1 .. 66
3.2.3 Rule 2 .. 67
3.2.4 Rule 3 .. 68
3.2.5 Rule 4 .. 69
3.2.6 Rule 5 .. 70
3.2.7 Rule 6 .. 71
3.2.8 Rule 7 .. 72
3.2.9 Rule 8 .. 73
3.2.10 Using the 8 rules ... 74
3.2.11 Reducing an ERM to a relational scheme ... 75

3.3 Data integrity .. 76
3.3.1 Key integrity ... 77
3.3.2 Entity integrity .. 78
3.3.3 Referntial integrity ... 79
3.3.4 Integrity endangering operations ... 81

3.4 Normalisation ... 84
3.4.1 Dependencies ... 85
3.4.2 First normal form (1NF) ... 86
3.4.3 Second normal form (2NF) .. 87
3.4.4 Third normal form (3NF) .. 89
3.4.5 Exercise Normalisation .. 90
3.4.6 Unit-Zusammenfassung .. 91

3.5 Summary .. 92
3.6 Recommended Reading .. 93
3.7 Glossary ... 94
3.8 Bibliography ... 96

4. Structured Query Language SQL .. 97
4.1 SQL Overview .. 98

4.1.1 SQL Concepts ... 99
4.1.2 Data Definition (DDL) .. 100
4.1.3 Data Manipulation (DML) .. 101
4.1.4 Data control (DCL) .. 102

4.2 Basic database queries ..103
4.2.1 SELECT-FROM-WHERE clause ...104
4.2.2 Multiple conditions ...105
4.2.3 Complex conditions ...106
4.2.4 Pattern matching and arithmetical operators ...107
4.2.5 Non-relational constructs ...108
4.2.6 Set operators ...109
4.2.7 Usage of SQL ..110
4.2.8 atabase queries ...111

Databases

http://www.gitta.info - Version from: 12.7.2007 3

4.3 SQL Insert, Delete and Update ..113
4.3.1 Inserting tuples ..114
4.3.2 Deleting tuples ...115
4.3.3 Updating tuples ... 116

4.4 WebSQL exercise ..117
4.4.1 Description of an Exercise ...118

4.5 Summary ..119
4.6 Recommended Reading .. 120
4.7 Bibliography ... 121

Databases

http://www.gitta.info - Version from: 12.7.2007 4

1. Introduction to Database
Systems

Data management and especially the management of geodata is not bound to a specific
technology. It would be possible to use analogous map archives or file based record systems.
However, the term Geoinformationsystem implies some demands that exceed the storage and
retrieval of data. These additional needs can be satisfied sensibly with database systems only.
This lesson is focused on database concepts and architectures. After an introduction and the
definition of some of the most important terms in the unit Definition of Terms [Link to lesson

unit_DefinOfTerms.html] we will devote our selfs to the specific characteristics of the database
approach (unit Characteristics of the Database Approach [Link to lesson unit_DBApproaChar.html]). The
closer examination of various applications of databases in the unit Example Applications [Link to

lesson unit_ExamplesApps.html] allows to become acquainted with the use of databases in different
fields and contexts and to extend the knowledge about the characteristics of databases. A
comparison of the database approach with file based solutions is made in the unit Advantages and
Disadvantages [Link to lesson unit_AdvantDisadv.html] .

Learning Objectives
• Be used to the terminology of data, information and data management and be able to explain

the most important terms.

• Know and understand the characteristics of database systems and be able to transfer these
to applications in your daily live.

Databases

http://www.gitta.info - Version from: 12.7.2007 5

1.1 Definition of Terms

From Data to usable Information...
Before we start with the use and architecture of data management solutions we discuss the
terminology of this field to get to know the basic terms like information, data, database systems. A
lot of these basic terms are used daily but most often not in the right context.

Databases

http://www.gitta.info - Version from: 12.7.2007 6

3 In the information theory three dimensions of information are distinguished: the syntactic, the semantic and the

pragmatic. Let us take the example of a traffic light. In the syntactic dimension we differentate the three colours red,

yellow and green. But the traffic light makes more sense in the semantic dimension. In this dimension the colours

are linked to meanings. Red means stop, green means go on. However, only in the pragmatic dimension the traffic

light gets useable for the traffic. Pragmatically, red means that the driver of a car must stop.
4 Syntax can in linguistics be described as the study of the rules, or "patterned relations" that govern the way the

words in a sentence come together.

1.1.1 Data versus Information
Data (especially computer data):

The presentation of facts, information or concepts which are created in a computer readable
form or are translated into such a form.

Information:
Information is a useable answer to a concrete question. (ZEHNDER 1998)

Something is information if a specific question is answered and that answer increases the
understanding of the questioner and enables him to come closer to a specific objective.
(Translation from (ZEHNDER 1998))
Information has the following aspects:

• structured 3 and syntactic 4

• semantic (as regards content)

• pragmatic (relevant to applications)

Relationship between Data and Information
The terms data and information are often used interchangeably and in the wrong context.
Therefore a list of distinguishing features is presented below

• Semantic aspects of data are often coded. This codes need to be defined and interpreted
after conventions previously agreed upon (e.g. Grades from 1 to 6 with the convention 6 =
very good).

• Generally, information needs to be reconstructed or derived from data (e.g. the average
rainfall of the month July over the last 10 years).

• Normally, data do not contain aspects relevant to applications (e.g. it is not possible to derive
information for applications like tax, developement, flood risk, etc. from the coordinates of a
parcel of land).

A letter in chinese language

Trying to read a letter in a foreign language
we are able to recognise the structure and
the syntactic aspects of it like the
paragraphs, sentences, words, etc. but we
cannot make out the meaning of the
writing.
However, writing in our own language too
cannot be called information in every case.
At least we might be able to understand the
content (semantic) but if this content is
irrelevant or not interesting to us then the
important aspect of the usefulness is
missing.

Databases

http://www.gitta.info - Version from: 12.7.2007 7

8 A concept is an abstract, universal idea, notion, or entity that serves to designate a category or class of entities, events, or

relations. Concepts are abstract in that they omit the differences of the things in their extension, treating them as if they

were identical. They are universal in that they apply equally to every thing in their extension. Concepts are also the basic

elements of propositions, much the same way a word is the basic semantic element of a sentence.

1.1.2 The Components of an Information System
Conceptually 8 an information systems has got a layered structure.
Move your mouse over the terms of the following interaction and get to know what parts make up
an information system.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

The data managements components of an information system are:
Data and Database:

An amount of data which are viewed by the operator as somehow going together plus additional
data which is used by the DBMS to work correctly are called a database.

Database Management System:
A database management system (DBMS) is a software product for the persistent, consistent
and application indepent storage and management of data. But also for the flexible and easy
use of big and concurrently used databases.

Database System:
A database system (DBS) consists of a DBMS and one or more databases.

Database management systems and database systems are in the focus of this module.
Information System:

A information system extends the database with a couple of software tools for querying,
presenting, transforming and analysing the data.

According to the first part of this unit where the difference between data and information [Link to

lesson DefinOfTerms_dataAndInfo.html] was discussed, the tools of an information system enrich the data
with semantic and pragmatic aspects.
For sure you have already heard the term geoinformation system and maybe also read the one or
other definition of it. The following paragraph defines the term geoinformation system and
compares this definition with the one of an information system as discussed earlier in this unit.
Geoinformation System:

"A geoinformation system allows to capture, store, analyse and present all data that describe a
part of the earths surface and all on this part located technical and administrative equipment but
also geoscientific, economic and ecologic features. (Translation)" (BARTELME 1989)

This definition contains the most important aspects of the definition of an information system but
focusses on data with spatial reference.

Databases

http://www.gitta.info - Version from: 12.7.2007 8

http://www.gitta.info/IntroToDBS/en/multimedia/aufbau_informationssystem.swf

1.2 Characteristics of the Database
Approach

The database approach has some very characteristic features which are discussed in detail in this
unit.
In the unit Example Applications [Link to lesson unit_ExamplesApps.html] the use of databases in different
fields is presented and according to these examples the most important features of the database
approach revised.
A comparison between the filebased approach and the database approach can be found in the unit
Advantages and Disadvantages [Link to lesson unit_AdvantDisadv.html] .

Databases

http://www.gitta.info - Version from: 12.7.2007 9

16 Redundancy, in general terms, refers to the quality or state of being redundant, that is: exceeding what is necessary or

normal, containing an excess. This can have a negative connotation, superfluous, but also positive, serving as a duplicate

for preventing failure of an entire system.
17 Geodata or data with a spatial relation are data about object that through a position in space directly or indirectly can be

referenced. The space is defined through a coordinate system which is in relation to the earth surface.

1.2.1 Concurrent Use
A database system allows several users to access the database concurrently. Answering different
questions from different users with the same (base) data is a central aspect of an information
system.
Such concurrent use of data increases the economy of a system. Data capturing and data storage
is not redundant 16, the system can be operated from a central control and the data can be updated
more efficient. Additionally, better use of the most often very expensive (geo) data 17 can be made.
When using data concurrently the problem of how the system should behave if changes done are
in competition (e.g. two different users with different applications change the same data
simultaneously) needs to be solved. Additionally, there is a bigger security risk, for example, in the
realms of data protection.
In technical jargon changes to a database are called transactions. This term is explained later in
this lesson.
An example for concurrent use is the travel database of a bigger travel agency. The employees of
different branches can access the database concurrently and book journeys for their clients. Each
travel agent sees on his interface if there are still seats available for a specific journey or if it is
already fully booked.

Concurrent Use of the same Data

Databases

http://www.gitta.info - Version from: 12.7.2007 10

18 Metadata literally "data about data", is information that describes another set of data. A common example is a library

catalog card, which contains data about the contents and location of a book: It is data about the data in the book referred to

by the card. Other common contents of metadata include the source or author of the described dataset, how it should be

accessed, and its limitations. Another important type of data about data is the links or relationship among data.

1.2.2 Structured and Described Data
A fundamental feature of the database approach is that the database systems does not only
contain the data but also the complete definition and description of these data. These descriptions
are basically details about the extent, the structure, the type and the format of all data and,
additionally, the relationship between the data. This kind of stored data is called metadata ("data
about data").
Metadata 18 is used from the DBMS software but also from applications like GIS and from users of
databases. As DBMS software is not written for one specific database application the metadata of
a database is used to get information about the extent, the structure, etc. of it.
Structured Data:

Data is called structured if it can be subdivided systematically and linked.
Following a simple example how data can be described in a database.
Below there is a database table. Because of the structure of this table (first colum = Prename,
second column = Name, third column = Postcode, forth column = City) it is known that a entry in
the first column must be a prename (coded as string) and an entry in the third column must be a
postcode (coded as number).

Example of an Database Table

Databases

http://www.gitta.info - Version from: 12.7.2007 11

1.2.3 Separation of Data and Applications
As described in the feature structured data [Link to lesson DBApproaChar_struktDaten.html] the structure of
a database is described through metadata which is also stored in the database.
An application software does not need any knowledge about the physical data storage like
encoding, format, storage place, etc. It only communicates with the management system of a
database (DBMS) via a standardised interface with the help of a standardised language like SQL.
The access to the data and the metadata is entirely done by the DBMS.
In this way all the applications can be totally seperated from the data. Therefore database internal
reorganisations or improvement of efficiency do not have any influence on the application software.

Separation of Data and Applications

Databases

http://www.gitta.info - Version from: 12.7.2007 12

1.2.4 Data Integrity
Data integrity is a byword for the quality and the reliability of the data of a database system. In a
broader sense data integrity includes also the protection of the database from unauthorised access
(confidentiality) and unauthorised changes.
Data reflect facts of the real world. Logically, it is demanded that this reflection is done correctly. A
DBMS should support the task to bring only correct and consistent data into the database.
Additionally, correct transactions [Link to lesson DBApproaChar_transakt.html] ensure that the consistency
is maintained during the operation of the system.
An example for inconsistency would be if contradictory statements were saved in the same
database.

Two Database Tables with Contradictory Datasets

Databases

http://www.gitta.info - Version from: 12.7.2007 13

1.2.5 Transactions
A transaction is a bundle of actions which are done within a database to bring it from one
consistent state to a new consistent state. In between the data are inevitable inconsistent.
A transaction is atomic what means that it cannot be divided up any further. Within a transaction all
or none of the actions need to be carried out. Doing only a part of the actions would lead to an
inconsistent database state.
One example of a transaction is the transfer of an amount of money from one bank account to
another. The debit of the money from one account and the credit of it to another account makes
together a consistent transaction. This transaction is also atomic. The debit or credit alone would
both lead to an inconsistent state. After finishing the transaction (debit and credit) the changes to
both accounts become persistent and the one who gave the money has now less money on his
account while the receiver has now a higher balance.
Try it using the buttons at the bottom to the left which allow to navigate through the steps of this
example.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 14

http://www.gitta.info/IntroToDBS/en/multimedia/transaktion_konten.swf

1.2.6 Data Persistence
Data persistence means that in a DBMS all data is maintained as long as it is not deleted
explicitely. The life span of data needs to be determined directly or indirectly be the user and must
not be dependent on system features. Additionally data once stored in a database must not be lost.
Changes of a database which are done by a transaction [Link to lesson DBApproaChar_transakt.html] are
persistent. When a transaction is finished even a system crash cannot put the data in danger.

Databases

http://www.gitta.info - Version from: 12.7.2007 15

1.2.7 Data Views
Typically, a database has several users and each of them, depending on access rights and desire,
needs an individual view of the data (content and form). Such a data view can consist of a subset
of the stored data or of from the stored data derived data (not explicitely stored).
A university manages the data about students. Beside matriculation number, name, address, etc.
other information like in which course the student is registered, if he needs to do a resit, and so on
is managed as well.
This extensive database is used by several people all with different needs and rights.
Please click on the four buttons below to see the different data views for different users of this
database.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

The database administrator has a view on the whole database while other users in this example
have only a restricted view on the database. The administration, for example, does not need
information about names and matriculation numbers in case they want to create an anonymous
statistic about the resits. In the student lists there should not be any sensitive data about the resits
or similiar. However, the lecturer of a class needs the detailed information about the students in
this class including resits and so on.

Databases

http://www.gitta.info - Version from: 12.7.2007 16

http://www.gitta.info/IntroToDBS/en/multimedia/sichten.swf

1.3 Example Applications
Current information technology solutions distinguish itselfs by having many distributed user which
want to concurrently use constantly updated data. Therefore, database systems are used in
different fields and there is rarely an information technology solution that gets by without.
Following a couple of examples for the use of database systems are discussed.
For each example the application is shortly described first and then the for this application specific
database features are commented on. The respective features with their descriptions can be found
in the unit Characteristics of the Database Approach [Link to lesson unit_DBApproaChar.html] which is
linked from the keywords.

Databases

http://www.gitta.info - Version from: 12.7.2007 17

1.3.1 Management of Bank Accounts
The management of bank accounts are a demanding task which has used database systems as
aid since some time. Today, probably nobody could think about operating in the very complex
world of finances without the help of database systems.
The most important characteristics of such database systems:

Transaction [Link to

lesson

DBApproaChar_transakt.html]

The successfull and correct course of transactions is very important when
managing bank accounts. It cannot be true that a credit is made to the
wrong account or that a debit is made more than once.

Data Integrity [Link to

lesson

DBApproaChar_dataint.html]

Data integrity is very important. It needs to be clearly defined what the
requirements and rules of consistency are and how these can be followed.

Data Persistence [Link

to lesson

DBApproaChar_datapersis.html]

For an owner of a bank account it is reassuring to know that the
persistence of the data is guaranteed. Data are not deleted arbitrarily or
are lost mysteriously.

Databases

http://www.gitta.info - Version from: 12.7.2007 18

1.3.2 Timetable Informationsystem
The online timetable of the SBB (Swiss Federal Railways) is an example of a web based
information system founded on a database system from the bounds of public transport. Its main
task is to inform the users with current and correct information about the best connections and the
train operation of the SBB at any time.
The most important characteristics of such a database system:

Concurrent Use [Link

to lesson

DBApproaChar_mehrfachn.html]

The database system of the SBB timetable can be used by different users
and applications concurrently. While the information are used internally
within the SBB information about the timetables and other specific
information can also be used from the public via the internet.

Data Integrity [Link to

lesson

DBApproaChar_dataint.html]

The users of the SBB timetables need current and correct information at
any time. These makes great demands on the data integrity. Therefore,
timetable or platform changes or any other changes need to be updated
constantly in the database system.

Such a database system can get more than one call per second in record times. Therefore,
perfomance is also a very important characteristic which was not mentioned above.

Screenshot SBB Timetable Informationsystem (SBB AG 2005)

Internet access to the SBB timetable: http://fahrplan.sbb.ch/ [http://fahrplan.sbb.ch/]

Databases

http://www.gitta.info - Version from: 12.7.2007 19

http://fahrplan.sbb.ch/

1.3.3 Library Catalogue
The library catalogue NEBIS (Lierz et al. 2004) is the catalogue of a network of libraries and
information desks in Switzerland. With the help of NEBIS it is possible to search for specific books
or publications in libraries all over Switzerland.
The most important characteristics of such a database system:

Structured and
Described Data [Link

to lesson

DBApproaChar_struktDaten.html]

It is more than helpful to have a clearly defined structure when recording
and updating several thousands of books, magazins and publications.
Additionally, the description of the data allows to search selectively for
specific objects.
Further, a clear structure is also free of redundancy. This saves works as
already a very small redundancy would lead to a multiple of work.

Data Views [Link to

lesson

DBApproaChar_datensichten.html]

Depending on how detailled and specialised a search should be done a
user needs more or less information from the database. Thus, for a coarse
search title and author might already be sufficient. However, when looking
for a specific edition of a book some more information is needed. With this
in view the user can choose between different data views. Additionally,
there are views for the manager of the catalogue which are not accessible
be the public user.

Different Data Views (click on the thumbnail for a bigger image)

Result List of the Search (Lierz et al. 2004) Standard View of a Choosen Entry (Lierz et al. 2004)

Databases

http://www.gitta.info - Version from: 12.7.2007 20

Catalogue View of a Choosen Entry (Lierz et al. 2004)
'MARC'-View of a Choosen Entry (Lierz et al. 2004)

Screenshot of a Library Catalogue (Lierz et al. 2004)

Online access to the NEBIS library catalogue: http://www.nebis.ch/ [http://www.nebis.ch/]

Databases

http://www.gitta.info - Version from: 12.7.2007 21

http://www.nebis.ch/

1.3.4 Central Geodata Warehouse
Lately, it is getting more common in city and canton governments to manage and update spatial
data of all parts of the government in one central data pool called geodata warehouse (a spatial
database management system). This makes huge savings as the data is now stored redundance
free and needs to be updated only once. Until now the some data needed to be stored and
updated in different departements of the government. This made it enormously difficult to have
current data at all places. Additionally, when doing bigger projects the data can now simply be
taken out of the geodata pool and does not need to be gathered in tedious and lengthy work.
The most important characteristics of such database systems:

Concurrent Use [Link

to lesson

DBApproaChar_mehrfachn.html]

A central geodata warehouse is a nice example of concurrent use of a
database system. On the one hand different users get their data from it -
the employees of the different departements. On the other hand different
application software (e.g. GIS systeme) are used to access the geodata
warehouse. Therefore, it is possible that the forestry departement uses
GIS software A for access to the data while the surveyor departement
uses GIS software B.

Separation of Data
and Applications [Link

to lesson

DBApproaChar_trennDataApp.html]

Like described above, different user with different applications get access
to the data. This is only possible, if the data is separated from the
applications. Would the data be connected to the application it would be
much work to process the data in way that other applications could read
and use it. This independence is especially import in cases where the
DBMS software needs replacement. With the separation of data and
applications this is possible without having to re-write all of the application
software.
Example: A Microsoft Word file (where the data is included in the
application format) is quite difficult to open with the Microsoft Excel
software even though both applications are made by the same company.

Data Persistence [Link

to lesson

DBApproaChar_datapersis.html]

The capture of geodata and other data is most often a lot of work and very
expensive. Therefore, data persistence is a very important characteristic of
a geodata warehouse. This way, it is possible to ensure that data is not
lost and needs then be replaced costly.

Data Integrity [Link to

lesson

DBApproaChar_dataint.html]

Governmental data often give information about legal conditions like, for
example, the cadaster. Therefore, these data need to be thoroughly
correct and reliable. That is achieved through the definition and following
of specific consistency requirements and rules.

Databases

http://www.gitta.info - Version from: 12.7.2007 22

Schematic Representation of a Geodata Warehouse and the possible Access to it from different Offices

Databases

http://www.gitta.info - Version from: 12.7.2007 23

1.3.5 Exercise

Setup Information for Tutors:Set up discussion topic 'Database Applications', Feedback from
Tutor to individual students

Find another database application (your work environment, internet,...) and try to figure out which
are the most important characteristics of that application.
Write a short summary of these information (like the ones you have seen in this unit) and post your
writing to the discussion board under the topic 'Database Applications'. Look and discuss also at
the postings from other students.
A tutor will comment on your summary (also posted to the discussion board)

Databases

http://www.gitta.info - Version from: 12.7.2007 24

1.4 Advantages and Disadvantages

From the file-card box to the database
Management and storage of data has changed a great deal over the years - from the file-card box,
via the first (file based) digital version, to the modern database systems. The first part of this unit
deals with file based systems in comparison to database systems. Afterwards, the advantages and
disadvantages of database systems are discussed.

Databases

http://www.gitta.info - Version from: 12.7.2007 25

1.4.1 Comparison DBS versus file based
Knowing about the characteristics of a database system (unit Characteristics of the Database
Approach [Link to lesson unit_DBApproaChar.html] and unit Example Applications [Link to lesson

unit_ExamplesApps.html]) we will have a look at file based systems. With a file based approach each
user defines and creates with a specific software the files he needs for a specific application. In
comparison to the database system approach this results in some limitations.
Move the mouse over the bold terms to the left and the limitations of the file based approach in
comparison to the database approach are explained in writing (right) and graphic (below).

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Using a file based system it is possible that, for example, the administration of a school maintains
information about the registration and fee payment of the students (e.g. based on a spreadsheet
software). Meanwhile the lecturers manage data about the students and their grades. Even though
both user groups are interested in student data they both might have different files and different
software to update and change these. Such redundancy in the definition and storage of data
wastes storage space. Additionally, the work needed to update data in more than one system is
multiplied by the number of systems. In case above a change of basic student data like the
address might need an update in the system of the lecturer and in the system of the administration
as well.

Databases

http://www.gitta.info - Version from: 12.7.2007 26

http://www.gitta.info/IntroToDBS/en/multimedia/dateibasiert_neu.swf

1.4.2 Advantages of a DBMS
Basically, all in the unit Characteristics of the Database Approach [Link to lesson unit_DBApproaChar.html]

listed features can be listed as advantages here too.

• Concurrent Use [Link to lesson DBApproaChar_mehrfachn.html]

• Structured and Described Data [Link to lesson DBApproaChar_struktDaten.html]

• Separation of Data and Applications [Link to lesson DBApproaChar_trennDataApp.html]

• Data Integrity [Link to lesson DBApproaChar_dataint.html]

• Transactions [Link to lesson DBApproaChar_transakt.html]

• Data Persistence [Link to lesson DBApproaChar_datapersis.html]

• Data Views [Link to lesson DBApproaChar_datensichten.html]

Additionally, there are some advantages which were not yet explicitely mentioned.
Use the blue buttons to navigate.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Click on the following link to get a list of the further advantages. (DOC file of the advantages
[http://www.gitta.info/IntroToDBS/en/multimedia/furtherAdvantagesDBMS.doc])

Databases

http://www.gitta.info - Version from: 12.7.2007 27

http://www.gitta.info/IntroToDBS/en/multimedia/vorteile.swf
http://www.gitta.info/IntroToDBS/en/multimedia/furtherAdvantagesDBMS.doc

1.4.3 Disadvantages of a DBMS
Beside the numerous advantages of a database system the disadvantages should not be kept
secret.
Use the blue buttons to navigate.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Click on the following link to get a list of the disadvantages. (DOC file of the disadvantages
[http://www.gitta.info/IntroToDBS/en/multimedia/DisadvantagesDBMS.doc])

Databases

http://www.gitta.info - Version from: 12.7.2007 28

http://www.gitta.info/IntroToDBS/en/multimedia/nachteile.swf
http://www.gitta.info/IntroToDBS/en/multimedia/DisadvantagesDBMS.doc

1.5 Tasks
The following task should allow you to test if you have understood the content of this lesson.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Drag the numbers beside the terms onto the circles in the graphic. Place them as exactly as
possible and click '>Check' when you have placed them all. Symbols will show you which numbers
are placed correctly and which are on the wrong place. The '>Reset' button clears the graphic from
all numbers.
Attention: The '>Check' button only works correctly if all circles in the graphic are covered with a
number.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 29

http://www.gitta.info/IntroToDBS/en/multimedia/tabellenkalkulationVsDbms.swf
http://www.gitta.info/IntroToDBS/en/multimedia/zentralesGeodataWarehouse.swf
http://www.gitta.info/IntroToDBS/en/multimedia/dragDrop_test_informationssystemaufbau.swf

1.6 Summary
In this lesson the significance of the data management based on database systems and the role of
a database system within a geoinformation system (GIS) was explained. At the beginning, terms
like database system and geoinformation system were defined and the terms data and information
positioned in context.
Following important reasons for the use of database systems for the management of data in
general and geodata in particular were given and illustrated with example applications of different
fields of use. Included in the significant characteristics of the database approach are concurrent
use as well as structured and described data. Additionally the advantages of the separation of data
and applications and the features for high reliablitiy and data security like the concepts of
transactions and data views were discussed.

Databases

http://www.gitta.info - Version from: 12.7.2007 30

1.7 Recommended Reading
• ZEHNDER, C.A., 1998. Informationssysteme und Datenbanken. Zürich: vdf Hochschulverlag

AG.
Introduction into Information Systems and Databases, in German

Databases

http://www.gitta.info - Version from: 12.7.2007 31

1.8 Glossary
Conceptual:

A concept is an abstract, universal idea, notion, or entity that serves to designate a category or
class of entities, events, or relations. Concepts are abstract in that they omit the differences of
the things in their extension, treating them as if they were identical. They are universal in that
they apply equally to every thing in their extension. Concepts are also the basic elements of
propositions, much the same way a word is the basic semantic element of a sentence.

Data (especially computer data):
The presentation of facts, information or concepts which are created in a computer readable
form or are translated into such a form.

Data and Database:
An amount of data which are viewed by the operator as somehow going together plus additional
data which is used by the DBMS to work correctly are called a database.

Database Management System:
A database management system (DBMS) is a software product for the persistent, consistent
and application indepent storage and management of data. But also for the flexible and easy
use of big and concurrently used databases.

Database System:
A database system (DBS) consists of a DBMS and one or more databases.

Dimensions of Information:
In the information theory three dimensions of information are distinguished: the syntactic, the
semantic and the pragmatic. Let us take the example of a traffic light. In the syntactic dimension
we differentate the three colours red, yellow and green. But the traffic light makes more sense
in the semantic dimension. In this dimension the colours are linked to meanings. Red means
stop, green means go on. However, only in the pragmatic dimension the traffic light gets
useable for the traffic. Pragmatically, red means that the driver of a car must stop. (Anonymous)

Geodata:
Geodata or data with a spatial relation are data about object that through a position in space
directly or indirectly can be referenced. The space is defined through a coordinate system which
is in relation to the earth surface.

Geoinformation System:
"A geoinformation system allows to capture, store, analyse and present all data that describe a
part of the earths surface and all on this part located technical and administrative equipment but
also geoscientific, economic and ecologic features. (Translation)" (BARTELME 1989)

Information:
Information is a useable answer to a concrete question. (ZEHNDER 1998)

Information System:
A information system extends the database with a couple of software tools for querying,
presenting, transforming and analysing the data.

Metadata:
Metadata literally "data about data", is information that describes another set of data. A
common example is a library catalog card, which contains data about the contents and location
of a book: It is data about the data in the book referred to by the card. Other common contents
of metadata include the source or author of the described dataset, how it should be accessed,
and its limitations. Another important type of data about data is the links or relationship among
data.

Databases

http://www.gitta.info - Version from: 12.7.2007 32

Redundancy:
Redundancy, in general terms, refers to the quality or state of being redundant, that is:
exceeding what is necessary or normal, containing an excess. This can have a negative
connotation, superfluous, but also positive, serving as a duplicate for preventing failure of an
entire system.

Structured Data:
Data is called structured if it can be subdivided systematically and linked.

Syntax:
Syntax can in linguistics be described as the study of the rules, or "patterned relations" that
govern the way the words in a sentence come together.

Databases

http://www.gitta.info - Version from: 12.7.2007 33

1.9 Bibliography
• ANONYMOUS. Available from:

http://www.foraus.de/download/aktuelles/hl_ausb_m_lernaufg.pdf [Accessed 31. März 2003].

• BARTELME, N., 2000. Geoinformatik - Modelle, Strukturen, Funktionen. 3rd. Berlin:
Springer.

• BARTELME, N., 1989. GIS-Technologie. Geoinformationssysteme,
Landinformationssysteme und ihre Grundlagen. Springer.

• DITTRICH, K., 1999. Datenbanksysteme. In: RECHENBERG, P., POMBERGER, G., ed.
Informatik-Handbuch. Wien: Carl Hanser Verlag, 875-908.

• LIERZ, W., SCHERER, E. (2004). Netzwerk von Bibliotheken und Informationsstellen in der
Schweiz [online]. Zürich. Available from: http://www.nebis.ch/ [Accessed 29. Juni 2005].

• SBB AG (2005). SBB: Online Fahrplan [online]. Available from: http://www.sbb.ch/
[Accessed 29. Juni 2005].

• WARTH, D.. Available from:
http://www.fask.uni-mainz.de/inst/iaspk/Linguistik/Syntax/Was.html [Accessed 25. Oktober
2004].

• ZEHNDER, C.A., 1998. Informationssysteme und Datenbanken. Zürich: vdf Hochschulverlag
AG.

Databases

http://www.gitta.info - Version from: 12.7.2007 34

http://www.nebis.ch/
http://www.sbb.ch/
http://www.fask.uni-mainz.de/inst/iaspk/Linguistik/Syntax/Was.html

1 A concept is an abstract, universal idea, notion, or entity that serves to designate a category or class of entities, events, or

relations. Concepts are abstract in that they omit the differences of the things in their extension, treating them as if they

were identical. They are universal in that they apply equally to every thing in their extension. Concepts are also the basic

elements of propositions, much the same way a word is the basic semantic element of a sentence.

2. Database Systems: Concepts
and Architectures

Knowing about the advantages of database supported data management and the huge possibilities
of applying database systems this lesson will explain the basic concepts and typical architectures
of database systems.
Firstly, it is discussed how a conceptual 1 scheme can be transfered into a database environment
and which typical database models can be used for this task. Afterwards, the generic database
architecture is explained which should allow understanding the important aspects of the
co-operation between the different schemes and the interfaces for the communication with a
database management system.

Learning Objectives
• You know the relationship between data schemes, database models and database instances

and are able to describe them.

• You are able to sketch and explain the 3-Scheme-Architecture.

• You know the meaning and principles of a database interface and are able to list their typical
features.

Databases

http://www.gitta.info - Version from: 12.7.2007 35

2.1 Database Models, Schemes and
Instances

With the help of databases facts and processes from the real world should be described and stored
in digital form. The abstraction from the real world to the digital format is done with the help of
models, so called database models.
In this unit the most often used database models are presented. Following, database schemes are
introduced as a formal description of a concrete database and their database instances or their
database state.

Databases

http://www.gitta.info - Version from: 12.7.2007 36

2.1.1 Database Models
Database systems can be based on different data models or database models respectively. A data
model is a collection of concepts and rules for the description of the structure of the database.
Structure of the database means the data types, the constraints and the relationships for the
description or storage of data respectively.
The most often used data models are:

Network Model and
Hierarchical Model

The network model and the hierarchical model are the predecessors of the
relational model. They build upon individual data sets and are able to
express hierarchical or network like structures of the real world.

Network Model and Hierarchical Model

Relational Model The relational model is the best know and in todays DBMS most often
implemented database model. It defines a database as a collection of
tables (relations) which contain all data.
This module deals predominantly with the relational database model and
the database systems based on it.

Relational Database Model

Object-oriented
Model

Object-oriented models define a database as a collection of objects with
features and methods. A detailed discussion of object-oriented databases
follows in a advanced module.

Schematic Representation of a Object-oriented Database Model

Databases

http://www.gitta.info - Version from: 12.7.2007 37

Object-relational
Model

Object-oriented models are very powerful but also quite complex. With the
relatively new object-relational database model is the wide spread and
simple relational database model extended by some basic object-oriented
concepts. These allows to work with the widely know relational database
model but also have some advantages of the object-oriented model
without its complexity.

Schematic Represenation of the object-relational Database Model

Databases

http://www.gitta.info - Version from: 12.7.2007 38

2 Metadata literally "data about data", is information that describes another set of data. A common example is a library

catalog card, which contains data about the contents and location of a book: It is data about the data in the book referred to

by the card. Other common contents of metadata include the source or author of the described dataset, how it should be

accessed, and its limitations. Another important type of data about data is the links or relationship among data.
5 An entity is something that has a distinct, separate existence, though it need not be a material existence. In a relational

database an entity is represented as a relation.

2.1.2 Database Schemes and Database Instances
Independent from the database model it is important to differentiate between the description of the
database and the database itselfs. The description of the database is called database scheme or
also metadata 2. The database scheme is defined during the database design process and
changes very rarely afterwards.
The actual content of the database, the data, changes often over the years. A database state at a
specific time defined through the currently existing content and relationship and their attributes is
called database instance
The following illustration shows that a database scheme could be looked at like a template or
building plan for one or several database instances.

Analogy Database Schemes and Building Plans

When designing a database it is differentiated between two levels of abstraction and their
respective data schemes, the conceptional and the logical data scheme.
Conceptional Data Scheme:

A conceptual data scheme is a system independent data description. That means that it is
independent from the database or computer systems used. (Translated) (ZEHNDER 1998)

Logical Data Scheme:
A logical data scheme describes the data in a data definition language DDL of a specific
database management system. (Translated) (ZEHNDER 1998)

The conceptual data scheme orients itselfs exclusively by the database application and therefore
by the real world. It does not consider any data technical infrastructure like DBMS or computer
systems which are eventually employed. Entity relationship diagrams 5 and relations are tools for
the development of a conceptual scheme.

Databases

http://www.gitta.info - Version from: 12.7.2007 39

When designing a database the conceptual data scheme is derived from the logical data scheme
(see unit Relational Database Design [http://www.gitta.info/LogicModelin/en/]). This derivation results in a
logical data scheme for one specific application and one specific DBMS. A
DB-Developmentsystem converts then the logical scheme directly into instructions for the DBMS.

Schematic Represenation of the Different Schemes

Databases

http://www.gitta.info - Version from: 12.7.2007 40

http://www.gitta.info/LogicModelin/en/

2.1.3 Comparison of Spatial Models and Database Models
Knowing about data modelling the concepts and numerical models for the representation of spatial
phenomena should be familiar.
The following comparison should make the differentiation between spatial models and database
models a bit easier.

Spatial Models
Spatial models allow to model or represent respectively spatial phenomena of the real world like
facts and processes. This happens firstly on a conceptual level what means that, in general, the
actual implementation of these models is not considered. Spatial models are often graphic oriented
models like maps or plans and can be represented digitally or analogously (e.g. plaster model).
Examples for spatial models:

• the vector model as special case of the object model

• the raster model as special case of the tesseral spatial model

Database Models
Database models are from the category of informatic models and are therefore exact models or
implementation models respectively. Database models can be used quite often and are not
restricted to spatial types of problems.
Examples for database models:

• the relational database model

• the object-relational database model

In the intermediate module data management the representation of spatial data models in
database models and the representation of spatial data in geodatabase system will be discussed.

Databases

http://www.gitta.info - Version from: 12.7.2007 41

2.2 DBMS-Architecture and Data
Independence

Database management systems are complex softwares which were often developed and optimised
over years. From the view of the user, however, most of them have a quite similar basic
architecture. The discussion of this basic architecture shall help to understand the connection with
data modelling and the introductionally to this module postulated 'data independence' of the
database approach.

Databases

http://www.gitta.info - Version from: 12.7.2007 42

2.2.1 Three-Schemes Architecture
Knowing about the conceptual and the derived logical scheme (discussed in unit Database Models,
Schemes and Instances [Link to Page] this unit explains two additional schemes - the external
scheme and the internal scheme - which help to understand the DBMS architecture.
External Scheme:

A external data scheme describes the information about the user view of specific users (single
users and user groups) and the specific methods and constraints connected with this
information. (Translated) (ZEHNDER 1998)

Internal Scheme:
The internal data scheme describes the content of the data and the needed service functionality
which is used for the operation of the DBMS. (Translated) (ZEHNDER 1998)
Therefore, the internal scheme describes the data from a view very close to the computer or
system in general. It completes the logical scheme with data technical aspects like storage
methods or help functions for more efficiency.

Three-Schemes Architecture

The right hand side of the representation above is also called the three-schemes architecture:
internal, logical and external scheme.
While the internal scheme describes the physical grouping of the data and the use of the storage
space, the logical scheme (derived from the conceptual scheme) describes the basic construction
of the data structure. The external scheme of a specific application, generally, only highlights that
part of the logical scheme which is relevant for its application. Therefore, a database has exactly
one internal and one logical scheme but may have several external schemes for several
applications using this database.
The aim of the three-schemes architecture is the separation of the user applications from the
physical database, the stored data. Physically the data is only existent on the internal level while
other forms of representation are calculated or derived respectively if need is. The DBMS has the
task to realise this representation between each of these levels.

Databases

http://www.gitta.info - Version from: 12.7.2007 43

Databases

http://www.gitta.info - Version from: 12.7.2007 44

2.2.2 Data Independence
With knowledge about the three-schemes architecture the term data independence can be
explained as followed: Each higher level of the data architecture is immune to changes of the next
lower level of the architecture.
Physical Independence:

Therefore, the logical scheme may stay unchanged even though the storage space or type of
some data is changed for reasons of optimisation or reorganisation.

Logical Independence:
Also the external scheme may stay unchanged for most changes of the logical scheme. This is
especially desirable as in this case the application software does not need to be modified or
newly translated.

Databases

http://www.gitta.info - Version from: 12.7.2007 45

2.3 Database Languages and Database
Interfaces

Until now, we have got to know about data models, data descriptions and the components of a
database system.
In this unit is explained how 'a data models gets into a database system' and 'how the information
gets to the users'. More correctly formulated the following questions will be answered:

• How does an application interact with a database management system?

• How does a user look at a database system?

• How can a user query a database system and view the results in his/her application?

Databases

http://www.gitta.info - Version from: 12.7.2007 46

2.3.1 Database Languages

DDL For describing data and data structures a suitable description tool, a data definition
language (DDL), is needed. With this help a data scheme can be defined and also
changed later.
Typical DDL operations (with their respective keywords in the structured query language
SQL [http://www.gitta.info/RelQueryLang/en/]):

• Creation of tables and definition of attributes (CREATE TABLE ...)

• Change of tables by adding or deleting attributes (ALTER TABLE …)

• Deletion of whole table including content (!) (DROP TABLE …)

DML Additionally a language for the descriptions of the operations with data like store, search,
read, change, etc. the so-called data manipulation, is needed. Such operations can be
done with a data manipulation language (DML). Within such languages keywords like
insert, modify, update, delete, select, etc. are common.
Typical DML operations (with their respective keywords in the structured query language
SQL [http://www.gitta.info/RelQueryLang/en/]):

• Add data (INSERT)

• Change data (UPDATE)

• Delete data (DELETE)

• Query data (SELECT)

Often this two languages for the definition and manipulation of databases are combined in one
comprehensive language. A good example is the structured query language SQL which is
discussed in detail in lesson Structured Query Language SQL [http://www.gitta.info/RelQueryLang/en/] .

Databases

http://www.gitta.info - Version from: 12.7.2007 47

http://www.gitta.info/RelQueryLang/en/
http://www.gitta.info/RelQueryLang/en/
http://www.gitta.info/RelQueryLang/en/

2.3.2 Database Interfaces

Working Principle of a Database Interface

Working Principle of a Database Interface

The application poses with the help of SQL, a query language, a query to the database system.
There, the corresponding answer (result set) is prepared and also with the help of SQL given back
to the application. That communication can take place interactively or embedded into another
language.

Type and Use of the Database Interface

Following, two important uses of a database interface like SQL are listed:

Interactive SQL can be used interactively from a terminal.

Embedded SQL can be embedded into another language (host language) which might be
used to create a database application.

Databases

http://www.gitta.info - Version from: 12.7.2007 48

2.3.3 User Interfaces
A user interface is the view of a database interface that is seen by the user. User interfaces are
often graphically or at least partly graphically (GUI - graphical user interface) constructed and offer
tools which make the interaction with the database easier.

Form-based
Interfaces

This interface consist of forms which are adapted to the user. He/She can
fill in all of the fields and make new entries to the database or only some of
the fields to query the other ones. But some operations might be restricted
by the application.
Form-based user interfaces are wide spread and are a very important
mean of interacting with a DBMS. They are easy to use and have the
advantage that the user does not need special knowledge about database
languages like SQL.

Example of a Form-based User Interface

Text-based Interfaces To be able to administrate the database or for other professional users
there are possibilites to communicate with the DBMS directly in the query
language (in code form) via a input/output window.
We will see this possibility later in the lesson Structured Query Language
SQL [http://www.gitta.info/RelQueryLang/en/] .
Text-based interfaces are very powerful tools and allow an comprehensive
interaction with a DBMS. However, the use of those is based on active
knowledge of the respective database language.

Databases

http://www.gitta.info - Version from: 12.7.2007 49

http://www.gitta.info/RelQueryLang/en/
http://www.gitta.info/RelQueryLang/en/

Example of a Text-base User Interface

GIS Interface A GIS user interface often integrates also features of a database interface.
The database interaction takes place through the combination of different
interfaces:

• graphical interaction via a selection on the map

• combination of form-based and text-based interaction (e.g. special
Query-Wizards for the easier creation of database queries)

Databases

http://www.gitta.info - Version from: 12.7.2007 50

Example of a GIS Interface (GeoMedia, Intergraph)

Example of a Query-Wizard within a GIS

Databases

http://www.gitta.info - Version from: 12.7.2007 51

2.4 Tasks

Term matching
Drag the keywords below and drop them into the empty rectangles so that each time a pair of
matching terms are formed. Click the check button to see if you did it correctly. The reset button
sets all the terms back to their original position.
Hint: The terms in this exercise are used in the way they were introduced in this lesson. Literature
might probably use these terms slightly different.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

3-Scheme-Architecture
Drag the blue numbers near the keywords onto the correct white circles in the graphic. Click the
check button to see if you did it correctly. The reset button sets all the numbers back to their
original position.
Hint: The check button only works correctly after covering all of the empty circles in the graphic
with a number.
Tip: Start with easy/know keywords.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 52

http://www.gitta.info/DBSysConcept/en/multimedia/wortzuordnung_einfach.swf
http://www.gitta.info/DBSysConcept/en/multimedia/drag_drop_architektur_mod.swf

2.5 Exercise Data Independence
Setup Information for Tutors:Set up discussion topic 'Exercise Data Independence', give
feedback to postings of students

Describe in your own words the architecture of a database managment system and try to answer
the following question. What is data independence and how can it be ensured? If possible, add one
or two examples from your knowledge which show the advantage of data independence.
Your discussion should not be longer than 200-400 words. Post it to the discussion board under
the topic 'Exercise Data Independence'. Read and discuss the postings of fellow students too.

Databases

http://www.gitta.info - Version from: 12.7.2007 53

2.6 Summary
In this lesson the most often used database models (relational, object oriented and object
relational) and the database technologies based on them were discussed. Such a database model
offers some basic rules how a conceptual schema can be transfered in a specific database
environment and described by means of a logical scheme. The data description is the base for the
following creation and management of the database instances with the actual data. Logical
modelling on the base of a relational data model will be discussed in the later lesson Logical
Modelling [http://www.gitta.info/LogicModelin/en/] .
Following the generic database architecture based on the 3-scheme-architecture was discussed.
This 3-scheme-architecture extends the logical scheme with an internal and an external scheme.
The concept of dividing it into three parts is a important prerequisite for the earlier mentioned data
independence and the realisation of interfaces for the communication between applications and the
database management system. Most of the known database systems offer an interface on the
base of the structured query language SQL. The basic elements and the use of SQL will be
discussed in the later lesson Structured Query Language SQL [http://www.gitta.info/RelQueryLang/en/] .

Databases

http://www.gitta.info - Version from: 12.7.2007 54

http://www.gitta.info/LogicModelin/en/
http://www.gitta.info/LogicModelin/en/
http://www.gitta.info/RelQueryLang/en/

2.7 Recommended Reading
• ZEHNDER, C.A., 1998. Informationssysteme und Datenbanken. Zürich: vdf Hochschulverlag

AG.
Introduction into information systems and databases, including data modelling, in German

Databases

http://www.gitta.info - Version from: 12.7.2007 55

2.8 Glossary
Conceptional Data Scheme:

A conceptual data scheme is a system independent data description. That means that it is
independent from the database or computer systems used. (Translated) (ZEHNDER 1998)

Conceptual:
A concept is an abstract, universal idea, notion, or entity that serves to designate a category or
class of entities, events, or relations. Concepts are abstract in that they omit the differences of
the things in their extension, treating them as if they were identical. They are universal in that
they apply equally to every thing in their extension. Concepts are also the basic elements of
propositions, much the same way a word is the basic semantic element of a sentence.

Entity:
An entity is something that has a distinct, separate existence, though it need not be a material
existence. In a relational database an entity is represented as a relation.

External Scheme:
A external data scheme describes the information about the user view of specific users (single
users and user groups) and the specific methods and constraints connected with this
information. (Translated) (ZEHNDER 1998)

Internal Scheme:
The internal data scheme describes the content of the data and the needed service functionality
which is used for the operation of the DBMS. (Translated) (ZEHNDER 1998)
Therefore, the internal scheme describes the data from a view very close to the computer or
system in general. It completes the logical scheme with data technical aspects like storage
methods or help functions for more efficiency.

Logical Data Scheme:
A logical data scheme describes the data in a data definition language DDL of a specific
database management system. (Translated) (ZEHNDER 1998)

Logical Independence:
Also the external scheme may stay unchanged for most changes of the logical scheme. This is
especially desirable as in this case the application software does not need to be modified or
newly translated.

Metadata:
Metadata literally "data about data", is information that describes another set of data. A
common example is a library catalog card, which contains data about the contents and location
of a book: It is data about the data in the book referred to by the card. Other common contents
of metadata include the source or author of the described dataset, how it should be accessed,
and its limitations. Another important type of data about data is the links or relationship among
data.

Physical Independence:
Therefore, the logical scheme may stay unchanged even though the storage space or type of
some data is changed for reasons of optimisation or reorganisation.

Databases

http://www.gitta.info - Version from: 12.7.2007 56

2.9 Bibliography
• BARTELME, N., 2000. Geoinformatik - Modelle, Strukturen, Funktionen. 3rd. Berlin:

Springer.

• DITTRICH, K., 1999. Datenbanksysteme. In: RECHENBERG, P., POMBERGER, G., ed.
Informatik-Handbuch. Wien: Carl Hanser Verlag, 875-908.

• ELMASRI, R., NAVATHE, S.B., 1994. Fundamentals of Database Systems. 2nd. Redwood
City, California: Addison-Wesley.

• NEBIKER, S., 2002. Modul DBMS. Muttenz: FHBB, VGI.

• ZEHNDER, C.A., 1998. Informationssysteme und Datenbanken. Zürich: vdf Hochschulverlag
AG.

Databases

http://www.gitta.info - Version from: 12.7.2007 57

3. The relational database model
The relational database model is used in most of today's commercial databases. It is used since
the early 80ies and was developed 1970 by E. F. Codd. The relational database model is based on
a mathematical concept where relations are interpreted as tables.
The focus of this lesson lies in the conversion of a conceptual into a logical data scheme (the
relational database model) using an entity-relationship-schema. You will find more information
about schemas in the lesson about Database models, schemas and instances
[http://www.gitta.info/DBSysConcept/en/] .

Databases

http://www.gitta.info - Version from: 12.7.2007 58

http://www.gitta.info/DBSysConcept/en/

3.1 Concept of the relational model
In contrast to the entity-relationship-model (ERM) which is a conceptual model, the relational
model is a logical data model. It can be seen as lying one step or layer below the ERM. The
relational model is not about abstract objects but defines how data should be represented in a
specific database management system. The goal of a logical data model is to arrange the data in
such a form that it is consistent, non-redundant and supports operations for data manipulation.

Databases

http://www.gitta.info - Version from: 12.7.2007 59

3.1.1 Data organization in a relational data model
A logical data schema (model) is in most cases based on a conceptual data scheme which, with
the use of certain guidelines and rules, is transformed into a relational scheme (model). The main
organization unit in a relational data model is the relation. A relation can be represented as a table
but the definition of the relation is not necessarily equal to the definition of the table and vica versa.
Why use the relational model?

• Simplicity. Data in a relational model is represented through values that are structured with
only one construct: the "relation".

• Classification. The relational model is based on mathematical fundamentals: the set theory.

Databases

http://www.gitta.info - Version from: 12.7.2007 60

3.1.2 Definitionen
domain:

A domain D is a set of atomic values that defines the value range of attributes.

Example domain

tupel:
A tuple t is a list with n values t = <d1, d2, ..., dn> where each value di is either an element of
the domain Di or NULL. A tuple is a record in a relation (row in a table).

Example tupel

Attribute:
A column of a table represents an attribute. It can also be described as a that a domain D has in
arelation scheme R.

Example attribute

Relation scheme:
A relation scheme R (A1, A2, ..., An) is made up of a relation name R and a list of attributes
{A1, A2, ..., An}.

Databases

http://www.gitta.info - Version from: 12.7.2007 61

Example relation scheme

Relation:
A relation r is one instance of the relation scheme R(A1, A2, ..., An) containing a set of n-tuples
r ={t1, t2, ... , tn}.

Example relation

Relational database scheme:
A relational database scheme is a set of relation schemes S = {R1, ..., Rn} together with a set of
integrity conditions. A relational database is a relational database scheme together with a
database instance.

Databases

http://www.gitta.info - Version from: 12.7.2007 62

Relational scheme terms

The relational scheme of an object (entity) can be represented as a table (relation). In this example
the entity are grades. This entity is described with the attributes name, subject and the grade. The
domain (or value range) for the attributes name and subjects are all lower- and upper-case
characters of the alphabet, the domain for the grades are real numbers from 1 to 6. The structure
of this entity without any content is called a relational scheme. Any value that is entered has to be
within the defined value range or domain. A row in the table is also called a tuple.

Setup Information for Tutors:Diskussionsforum 'Relationales Datenmodell' aufsetzen

There is a small mistake in the above table. Do you find it?

Databases

http://www.gitta.info - Version from: 12.7.2007 63

3.2 Transforming an ERM to a relational
database scheme

In this unit we will learn the rules and methods to represent entity relationship models in relational
database schemes.
Each of the following mapping rules describes one of the components of the entity relationship
model. To reduce an ERM into a relational scheme all 8 rules have to be worked out. Each rule
has to be applied on every entity set (rule 1, 2, 7 and 8) or relationship set (rule 3, 4, 5 and 6).
Usually the correct processing sequence is: 1, 7, 8, 2, 3, 4, 5, and then 6.
For every rule a definition and an example is given.

Databases

http://www.gitta.info - Version from: 12.7.2007 64

3.2.1 ERM concepts

Entity relationship diagram
To understand the following mapping rules, you must be familiar with the concepts of the entity
relationship model (ERM). Using this flash example, you can refresh your memory about ERM.
hould any of the concepts be new, please consult the following book:

• Fundamentals of Database Systems, Elmasri, Ramez; Navathe, Shamakant B. (1994)

You should be familiar with the following terms: strong entity, weak entity, relationship, identifying
relationship, attribute, derived attribute, multivalued attribute, composite attribute, identifier or
primary key and discriminator.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 65

http://www.gitta.info/LogicModelin/en/multimedia/a3_v11.6.swf

3.2.2 Rule 1
In this first step, all strong entity sets are transformed into the relational database schema. For
subclasses use rule 8.

Definition rule 1
For each strong entity set G define a relational scheme R with the entity properties as attributes A.
For multivalued attributes use rule 7. Define the primary key (identifier).
In this example you can see the application of rule 1::

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

A strong entity set is taken for the creation of the relation:
Customer
All entity properties are used as attributes for the relation:
Customer (CustomerNo, FirstName, LastName, Street, StreetNo)
The primary key (or identifier) is defined. Here it is the attribute CustomerNo:
Customer (CustomerNo , FirstName, LastName, Street, StreetNo)

Databases

http://www.gitta.info - Version from: 12.7.2007 66

http://www.gitta.info/LogicModelin/en/multimedia/RELDBDesign_regel1.swf

3.2.3 Rule 2
In this step the weak entity sets are transformed into the relational database scheme.

Definition rule 2
For each weak entity set S with owner G create a relational scheme R with the entity properties as
attributes A. For multivalued attributes use rule 7. Use the primary key of G as foreign key in R.
Choose a discriminator (combination of attributes) that, together with the foreign key, will act as
primary key for R. Note that only the combination of the foreign key together with the discriminator
can act as primary key for R.
IIn this example you can see the application of rule 2:

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

A weak entity set is taken for the creation of the relation:
Part
All entity properties are used as attributes for the relation:
Part(Name, Editor)
The primary key of the owner's relational scheme is taken and added as a foreign key to the
relation. In this example the owner is Newspaper(Name, Circulation, Price) and the primary key is
Name which we use in the relation as NewspaperName (since Part already has a Name):
Part(NewspaperName, Name, Editor)
The discriminator attribute Name (of Part) together with the foreign key NewspaperName form the
primary key of the relation Part:
Part(NewspaperName, Name , Editor)

Databases

http://www.gitta.info - Version from: 12.7.2007 67

http://www.gitta.info/LogicModelin/en/multimedia/RELDBDesign_regel2neu.swf

3.2.4 Rule 3
In this step the binary relationships of the following type (1,1)(1,1), (0,1)(1,1) or (0,1)(0,1) are
transformed into the relational database scheme.

Definition rule 3
Search for all binary relationships B (1,1)(1,1), (0,1)(1,1) or (0,1)(0,1). Find the relational scheme S
and T that are connected through relationship B. Choose one of them (eg. S) and insert the
primary of the other relational scheme (eg. T) as a foreign key. Also add the properties of B as
attributes into this relational scheme.
In this example you can see the application of rule 3:

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

A binary relationship (type (1,1)(1,1)-, (0,1)(1,1)- and (0,1)(0,1)) is chosen: leads.
Then we choose an entity set that is related to this relationship:
Newspaper(Name , Circulation, Price)
The primary key of the second entity set (eg. ChiefEditor) is inserted as foreign key in the first
relational scheme:
Newspaper(Name , Circulation, Price, ChiefEditor_PersNo.)
Now the properties of the relationship are used as attributes in the relational scheme:
Newspaper(Name , Circulation, Price, ChiefEditor_PersNo. , SinceDate)

Databases

http://www.gitta.info - Version from: 12.7.2007 68

http://www.gitta.info/LogicModelin/en/multimedia/RELDBDesign_regel3.swf

3.2.5 Rule 4
In this step all binary relationships one to many/many to one (1,n)(1,1), (0,n) (1,1), (1,n)(0,1) or
(0,n)(0,1) are transformed into the relational database scheme.

Definition rule 4
Search for all regular binary relationships B of type (1,n)(1,1), (0,n)(1,1), (1,n)(0,1) and (0,n)(0,1)
and for their relational schemes S and T of the corresponding entity sets. Choose the relational
scheme on the "(1,1)"/"(0,1)"-side (here S) and insert there the primary key of T as a foreign key.
Also add the properties (if there are any) of B as attributes into this relational scheme.
In this example you can see the application of rule 4:

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

A binary relationship of type one to many/many to one ((1,n)(1,1)-, (0,n)(1,1)-, (1,n)(0,1)- und
(0,n)(0,1)) is chosen: "commissions"
Then we choose the entity set that is on the "(1,1) or (0,1)"-side:
Advertisment(AdNo , Size, Price, PublDate)
The primary key of the second entity set (eg. Customer) is inserted as foreign key in the first
relational scheme:
Advertisment(AdNo , Size, Price, PublDate, ClientCustomerNo.)

Databases

http://www.gitta.info - Version from: 12.7.2007 69

http://www.gitta.info/LogicModelin/en/multimedia/RELDBDesign_regel4.swf

3.2.6 Rule 5
In this step all binary relationships many to many (0,n)(0,n), (1,n) (0,n) or (1,n)(1,n) are transformed
into the relational database scheme.

Definition rule 5
Search for all regular binary relationships B of type many to many and the according relational
schemes S and T. For each B create a new relational scheme R. The primary keys of S and T are
used as foreign keys in R. Together they form the primary key of this new relational scheme R.
Also add the properties (if there are any) of B as attributes into this relational scheme R.
In this example you can see the application

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

A binary relationship of type many to many ((0,n)(0,n)-, (0,n)(1,n)- and (1,n)(1,n)) is chosen:
"published in"
For this relationship we define a new relational scheme:
AdpublishedInNewspaper
The primary keys of the connected relational schemes S and T are used as foreign key in the new
scheme R. Together they form the primary key for R:
AdpublishedInNewspaper (Ad_OrderNo, Newspaper_Name)
Now the properties of the relationship are used as attributes in the relational scheme:
AdpublishedInNewspaper (NameAd_OrderNo, Newspaper_Name , Position)

Databases

http://www.gitta.info - Version from: 12.7.2007 70

http://www.gitta.info/LogicModelin/en/multimedia/RELDBDesign_regel5.swf

3.2.7 Rule 6
In this step all relationships of order n are transformed into the relational database scheme. This
happens according to rule 5.

Definition rule 6
For all n-ary relationship types (n>2) use rule 5: Create a new relational scheme R and use the
primary keys of all connected relational schemes (S, T, etc.) as foreign keys. Together they form
the primary key for this new relational scheme R.
See the example of rule 5.

Databases

http://www.gitta.info - Version from: 12.7.2007 71

3.2.8 Rule 7
If in rule 1 multivalued attributes are encountered, they are transformed into separate relational
schemes according to this rule.

Definition rule 7
Define for each multivalued attribute A a new relational scheme R' which also contains this
attribute A and the primary key of the according relational scheme R. Together they form the
primary key for R'.
In this example you can see the application of rule 7:

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

A new relational scheme is created for the multivalued attribute TelNo containing TelNo as
attribute:
ChiefTelNo(TelNo)
The primary key of this multivalued attribute connected to the relational scheme is used as foreign
key in the new scheme:
ChiefTelNo(ChiefEditor_PersNo , TelNo)
The foreign key and the attribute together form the primary key for this new relational scheme:
ChiefTelNo(ChiefEditor_PersNo, TelNo)

Databases

http://www.gitta.info - Version from: 12.7.2007 72

http://www.gitta.info/LogicModelin/en/multimedia/RELDBDesign_regel7.swf

3.2.9 Rule 8
If in rule 1 you find subclasses then transform them according to this rule.

Definition rule 8
Define a relational scheme R for the superclass C with the attributes A(R)=(K, A1, A2, .., An),
where K is the primary key. For each subclass create a new relational scheme Ri with their
attributes and the primary key K of superclass C as an additional attribute. The primary key of Si is
also K.
In this example you can see the application of rule 8:

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Using the superclass define a relational scheme R with a primary key K:
Employee(ENumber)
For each subclass create a relational scheme:
Technician
Engineer(Training)
Add the primary key K of the superclass as attribute of the subclasses and use it also as primary
key:
Employee(ENumber),
Technician(ENumber),
Engineer(ENumber , Training)

Databases

http://www.gitta.info - Version from: 12.7.2007 73

http://www.gitta.info/LogicModelin/en/multimedia/RELDBDesign_regel8a.swf

3.2.10 Using the 8 rules
The following flash animation allows you to practice the 8 rules that you have now learned. Please
click on the flash-link below and follow the instructions.

Flash exercise

Databases

http://www.gitta.info - Version from: 12.7.2007 74

3.2.11 Reducing an ERM to a relational scheme

Setup Information for Tutors:Diskussionsforum 'Uebung Umwandlung' aufsetzen

Create a relational database scheme using the following conceptional data scheme (ERM - Entity
Relationship Model) using the rules you here learned in this unit. Primary keys should be marked
as underlined and foreign keys italic.
Publish your solution as a Word- or PDF-document on the discussion board. Check out the
solutions of the other students and comment them. Any problems with this exercise can also be
published on the discussion board. The solutions and questions will be checked by a tutor and
general feedback published.

A conceptional model (ERM)

Databases

http://www.gitta.info - Version from: 12.7.2007 75

3.3 Data integrity
Integrity or consistency stands for the quality and reliability of data of a database system. A
database is consistent if the data reflects the referenced objects correctly. It is inconsistent if there
exist ambiguous or contradictory tuples, relations or tables in the database.

Databases

http://www.gitta.info - Version from: 12.7.2007 76

3.3.1 Key integrity
Relations are defined as a unique set of tuples where no two tuples have the same combination of
values for all their attributes. To be distinct, they must have some primary key that allows to
reference each tuple. Key constraints deal with this issue.
Candidate key:

Each attribute or minimal combination of attributes that uniquely identifies any tuple in a relation
is called a candidate key. Minimal means that removing an attribute leaves the key without the
ability to uniquely identify any tuple and therefore not being a candidate key anymore.

Primary key:
The primary key is one chosen key candidate that acts as the identification key for a relation.
Usually this is a short attribute like a ID-number (identification key) or username. Attributes of
the primary are commonly underlined.

Databases

http://www.gitta.info - Version from: 12.7.2007 77

3.3.2 Entity integrity
The entity integrity is a result of the key integrity: No primary key is allowed to be the NULL(=no
value). If NULL-values would be allowed for primary keys, than two tuples could have NULL as key
value and therefore could not be distinguishably anymore. The key integrity would not be
respected. In SQL special routines (unique, not null) are used for key and entity integrity.
Example:

ID Name Surname Year

NULL Miller John 1955

NULL Miller John 1985

Since the primary key (here ID) of both tuples is NULL, we are not able to distinct these tuples.

Databases

http://www.gitta.info - Version from: 12.7.2007 78

3.3.3 Referntial integrity
In a relationship model, in contradiction to an entity relationship model ERM, there is no way to
model relationships between tuples explicitly. Therefore relationships are modeled implicitly using
a primary- and foreign-key concept.
Foreign key:

An attribute in a relational scheme R1 is a foreign key if it is in relationship with a primary key
from R2 and if:

• The domain (value range) of the foreign key in R1 is the same as the domain of the
primary key in R2.

• The set of values of the foreign key in R1 is a subset of all primary key values in R2.

Foreign keys usually are marked dotted underlined.
A relationship between two schemes is established by using the domain of the primary key in one
scheme as the domain of a foreign key in a second scheme (with the according attributes).
Referential integrity constraints ensure that any foreign key value is always pointing on an primary
key of an existing tuple. References to non-existing primary keys are not allowed. In such a case
the foreign key value must be set to NULL.
The relational scheme containing the foreign key is called the referencing scheme, the scheme
with the primary key is called the referenced scheme.A foreign key can also point to its own
scheme.
In the early days of computer databases, only workstations were able to check for referential
integrity. Today most PC-based database systems are able to check for referential integrity.

Example Referntial integrity

In the above table Division we have Div_No as a primary key. In the second table Employee this
key is used as a foreign key to associate each member to one department. For each department
number in the table Employee there exists a department in the table Division. These tables are
integer. If we would insert a tuple "4, Weber, A5" into table Employee then a database system
should refuse this operation because in table Division there exists no value A5 and therefore there
is no integrity.

Databases

http://www.gitta.info - Version from: 12.7.2007 79

Databases

http://www.gitta.info - Version from: 12.7.2007 80

3.3.4 Integrity endangering operations
There are three types of operation that could potentially endanger referential integrity:

• Inserting of a new tuple

• Deleting an existing tuple

• Updating attribute values of existing tuples

Of course with all these operations there has to be a check on all integrity rules. Selecting values
(browsing in the database) does not change any values and is therefore no integrity endangering
operation.

Inserting of a new tuple
With this operation all three integrity rules are concerned. The following problems can occur:

• Key integrity: The for this insertion used primary key value is already used in another tuple.

• Entity integrity: The primary key of the new tuple is NULL.

• Referential integrity: A foreign key without an associated primary key is used.

These operations must either be rejected by the database system or transformed into consistent
operations according to defined rules.

Databases

http://www.gitta.info - Version from: 12.7.2007 81

Examlpe Inserting of tuples

Deleting an existing tuple
With this operation only referential integrity is concerned. If a foreign key points on a primary key
that has been deleted, then the foreign key becomes invalid. The database system should react on
a delete operation with one of the following solutions: Abort the operation, cascading delete (also
the referenced tuple is deleted!) or set the value of the foreign key to NULL.

Example Deleting existing tuples

By deleting the tupel Div_No "A1" in the relation Division, the division number of the tupel ID "1" in
the relation Employee would become invalid.

Updating attribute values of existing tuples
With this operation all three integrity rules are concerned. An update operation can be seen as first
a delete of an existing tuple followed by a insert of a new tuple with updated values. Therefore all
the above rules must be applied. Problems arise only with the updating of primary or foreign keys.
All other attributes can be updated without any restriction.

Databases

http://www.gitta.info - Version from: 12.7.2007 82

Example Updating attribute values of existing tuples

By modifying the value Div_No in the relation Division from "A1" to "A4", the division number of ID
"1" in the relation Employee would become invalid.

Databases

http://www.gitta.info - Version from: 12.7.2007 83

3.4 Normalisation
Normalisationis a process which we analyze and alter a database relation in order to get more
concise and organized data structures. Normalised data is stable and has a natural structure. We
call a relation normalized if:

• it does not contain any redundancy

• it does not cause maintenance problems

• it is an accurate representation of the data

Relations that aren't normalised contain non-atomic attributes and therefore can contain redundant
information. Detailed planning of the ERM can help creating normalised relations. The following
steps will explain how existing relations can be normalised step by step.

Databases

http://www.gitta.info - Version from: 12.7.2007 84

3.4.1 Dependencies
In order to be able to normalise a relation according to the three normal forms, we must first
understand the concept of dependency between attributes within a relation.
Functional dependency:

If A and B are attributes of relation R, B is functionally dependenton A (denoted A --> B), if each
value of A in R is associated with exactly one value of B in R.

Example:

ID Name

S1 Meier

S2 Weber

The attribute Name is functionally dependent of attribute ID (ID --> Name).
Identification key:

If every attribute B of R is functionally dependent of A, than attribute A is a primary key.
Beispiel:

ID Name Surname

S1 Meier Hans

S2 Weber Ueli

Attribute ID is the identification key
Full functional dependency:

We talk about full functional dependency if attribute B is functional dependent on A, if A is a
composite primary key and B is not already functional dependent on parts of A.

Beispiel:

IDStudent Name IDProfessor Grade

S1 Meier P2 5

S2 Weber P1 6

The attribute Grade is fully functional dependent on the attributes IDStudent and IDProfessor.
Transitive dependency:

If A determines B and B determines C then C is determined by (dependent on) A. We write A
--> B and B --> C but not B --> A.

Example:

ID Name Konto_Nr Bank_Code_No Bank

L1 Meier 1234-5 836 UBS

L2 Weber 5432-1 835 CS

There is a transitive dependency between Bank_Code_No and Bank because Bank_Code_No is
not the primary key of the relation.

Databases

http://www.gitta.info - Version from: 12.7.2007 85

3.4.2 First normal form (1NF)
First normal form:

A relation is in first normal form if every attribute in every row can contain only one single
(atomic) value.

A university uses the following relation:
Student(Surname, Name, Skills)
The attribute Skills can contain multiple values and therefore the relation is not in the first normal
form.
But the attributes Name and Surname are atomic attributes that can contain only one value.

Example First normal form

To get to the first normal form (1NF) we must create a separate tuple for each value of the
multivalued attribute

Databases

http://www.gitta.info - Version from: 12.7.2007 86

3.4.3 Second normal form (2NF)
Second normal form:

A relation is in second normal form if it is in 1NF and every non key attribute is fully functionally
dependent on the primary key.

A university uses the following relation:
Student(IDSt, StudentName, IDProf, ProfessorName, Grade)
The attributes IDSt and IDProf are the identification keys.
All attributes a single valued (1NF).
The following functional dependencies exist:
1. The attribute ProfessorName is functionally dependent on attribute IDProf (IDProf -->
ProfessorName)
2. The attribute StudentName is functionally dependent on IDSt (IDSt --> StudentName)
3. The attribute Grade is fully functional dependent on IDSt and IDProf (IDSt, IDProf --> Grade)

Example Second normal form

The table in this example is in first normal form (1NF) since all attributes are single valued. But it is
not yet in 2NF. If student 1 leaves university and the tuple is deleted, then we loose all information

Databases

http://www.gitta.info - Version from: 12.7.2007 87

about professor Schmid, since this attribute is fully functional dependent on the primary key IDSt.
To solve this problem, we must create a new table Professor with the attribute Professor (the
name) and the key IDProf. The third table Grade is necessary for combining the two relations
Student and Professor and to manage the grades. Besides the grade it contains only the two IDs of
the student and the professor. If now a student is deleted, we do not loose the information about
the professor.

Databases

http://www.gitta.info - Version from: 12.7.2007 88

3.4.4 Third normal form (3NF)
Third normal form:

A relation is in third normal form if it is in 2NF and no non key attribute is transitively dependent
on the primary key.

A bank uses the following relation:
Vendor(ID, Name, Account_No, Bank_Code_No, Bank)
The attribute ID is the identification key. All attributes are single valued (1NF). The table is also in
2NF.
The following dependencies exist:
1. Name, Account_No, Bank_Code_No are functionally dependent on ID (ID --> Name,
Account_No, Bank_Code_No)
2. Bank is functionally dependent on Bank_Code_No (Bank_Code_No --> Bank)

Example Third normal form

The table in this example is in 1NF and in 2NF. But there is a transitive dependency between
Bank_Code_No and Bank, because Bank_Code_No is not the primary key of this relation. To get
to the third normal form (3NF), we have to put the bank name in a separate table together with the
clearing number to identify it.

Databases

http://www.gitta.info - Version from: 12.7.2007 89

3.4.5 Exercise Normalisation

Setup Information for Tutors:Discussion topic 'Normalisierungsübung' aufsetzen,
Studentenpostings kommentieren

The following table is already in first normal form (1NF). There is only one entry per field. Please
convert this table to the third normal form (3NF) using the techniques you learned in this Unit. Write
a short report about your solution and post it in the discussion board. Check the other solutions
and comment them, if necessary. If you have questions, you can also post them in the discussion
board. A tutor will look at the questions regularly and give feedback and answers.
A table with the students and their grades in different topics.

UnitID StudentID Date TutorID Topic Room Grade Book TutEmail

U1 St1 23.02.03 Tut1 GMT 629 4.7 Deumlich tut1@fhbb.ch

U2 St1 18.11.02 Tut3 GIn 631 5.1 Zehnder tut3@fhbb.ch

U1 St4 23.02.03 Tut1 GMT 629 4.3 Deumlich tut1@fhbb.ch

U5 St2 05.05.03 Tut3 PhF 632 4.9 Dümmlers tut3@fhbb.ch

U4 St2 04.07.03 Tut5 AVQ 621 5.0 SwissTopotut5@fhbb.ch

Databases

http://www.gitta.info - Version from: 12.7.2007 90

3.4.6 Unit-Zusammenfassung
This Unit showed how and why relations should be normalised. It prevents problems and saves
money. A careful planning in the conceptual phase helps implementing and normalising a table
properly. Although there is a fourth and a fifth normal form (that were not discussed here), usually it
is enough to normalise up to the third normal form.

Databases

http://www.gitta.info - Version from: 12.7.2007 91

3.5 Summary
In a relational model real world objects are represented in tables. Each table is made out of rows
and columns. Each row, also known as tuple or record, is made out of fields, also known as
attributes. Each Attribute stands for a certain feature of the real world object. An attribute is defined
by a name and its value.
Relations between tuples represent existing relationships between objects (tables). Furthermore
key attributes have to be defined (usually displayed underlined in a relation). They are necessary
for the allocation (relation) of objects (tables) and allow unique accesses to tables.
Integrity or consistency stands for the quality and reliability of data of a database system. A
database is consistent if the data reflects the referenced objects correctly. It is inconsistent if there
exist ambiguous or contradictory tuples, relations or tables in the database.
A relation model (scheme, entity) should reflect relationships that also logically (in the real world)
belong together. To avoid anomalies different types of normalisations help keeping the database
consistent.

Databases

http://www.gitta.info - Version from: 12.7.2007 92

3.6 Recommended Reading
• ELMASRI, R., NAVATHE, S.B., 1994. Fundamentals of Database Systems. 2nd. Redwood

City, California: Addison-Wesley.
Introduction in databases and SQL (in English).

Databases

http://www.gitta.info - Version from: 12.7.2007 93

3.7 Glossary
Attribute:

A column of a table represents an attribute. It can also be described as a that a domain D has in
arelation scheme R.

Candidate key:
Each attribute or minimal combination of attributes that uniquely identifies any tuple in a relation
is called a candidate key. Minimal means that removing an attribute leaves the key without the
ability to uniquely identify any tuple and therefore not being a candidate key anymore.

domain:
A domain D is a set of atomic values that defines the value range of attributes.

First normal form:
A relation is in first normal form if every attribute in every row can contain only one single
(atomic) value.

Foreign key:
An attribute in a relational scheme R1 is a foreign key if it is in relationship with a primary key
from R2 and if:

• The domain (value range) of the foreign key in R1 is the same as the domain of the
primary key in R2.

• The set of values of the foreign key in R1 is a subset of all primary key values in R2.

Foreign keys usually are marked dotted underlined.
Full functional dependency:

We talk about full functional dependency if attribute B is functional dependent on A, if A is a
composite primary key and B is not already functional dependent on parts of A.

Functional dependency:
If A and B are attributes of relation R, B is functionally dependenton A (denoted A --> B), if each
value of A in R is associated with exactly one value of B in R.

Identification key:
If every attribute B of R is functionally dependent of A, than attribute A is a primary key.

Primary key:
The primary key is one chosen key candidate that acts as the identification key for a relation.
Usually this is a short attribute like a ID-number (identification key) or username. Attributes of
the primary are commonly underlined.

Relation:
A relation r is one instance of the relation scheme R(A1, A2, ..., An) containing a set of n-tuples
r ={t1, t2, ... , tn}.

Relational database scheme:
A relational database scheme is a set of relation schemes S = {R1, ..., Rn} together with a set of
integrity conditions. A relational database is a relational database scheme together with a
database instance.

Relation scheme:
A relation scheme R (A1, A2, ..., An) is made up of a relation name R and a list of attributes
{A1, A2, ..., An}.

Second normal form:
A relation is in second normal form if it is in 1NF and every non key attribute is fully functionally
dependent on the primary key.

Third normal form:

Databases

http://www.gitta.info - Version from: 12.7.2007 94

A relation is in third normal form if it is in 2NF and no non key attribute is transitively dependent
on the primary key.

Transitive dependency:
If A determines B and B determines C then C is determined by (dependent on) A. We write A
--> B and B --> C but not B --> A.

Tupel:
A tuple t is a list with n values t = <d1, d2, ..., dn> where each value di is either an element of
the domain Di or NULL. A tuple is a record in a relation (row in a table).

Databases

http://www.gitta.info - Version from: 12.7.2007 95

3.8 Bibliography
• ELMASRI, R., NAVATHE, S.B., 1994. Fundamentals of Database Systems. 2nd. Redwood

City, California: Addison-Wesley.

• ZEHNDER, C.A., 1998. Informationssysteme und Datenbanken. Zürich: vdf Hochschulverlag
AG.

Databases

http://www.gitta.info - Version from: 12.7.2007 96

4. Structured Query Language
SQL

SQL (Structured Query Language) is a query language for relational databases. The roots of SQL
go back to SQUARE, a more mathematical oriented language and SEQUEL, a predecessor of
SQL from the seventies. There exist different standards (ISO and ANSI) of SQL, but the most
common one is SQL-92. The latest standard SQL-99 (or SQL3) even includes XML. In the
following Units we will give a simple overview of the most important SQL functions.

Databases

http://www.gitta.info - Version from: 12.7.2007 97

4.1 SQL Overview
SQL (Structured Query Language) is one of the main reasons for the commercial success of
relational databases. The ANSI (American National Standards Institute) and the ISO (International
Standards Organization) developed in 1986 the first SQL-version with the name SQL-86 or SQL1.
In 1992 a second and more extended standard with the name of SQL-92 or SQL2 was established.
The latest standard includes XML, dates from 1999 and is therefore called SQL-99 or SQL3. With
the use of SQL in most commercial database systems the migration from one system to another
has become easier for the user. In the ideal case, the user need not consider which system is used
because query formation in SQL remains the same.

Databases

http://www.gitta.info - Version from: 12.7.2007 98

4.1.1 SQL Concepts
SQL is a descriptive, entity-oriented query language for data manipulation with its roots in relational
algebra. Today SQL is used either as a stand-alone programming language or within other
languages like C, C++, Java, ADA, COBOL, FORTRAN, PL/1, PASCAL etc.
SQL actually consists of three sub languages:

• DDL - Data Definition Language: Used for creating databases and tables and for maintaining
the structure.

• DML - Data Manipulation Language: Used for accessing and extracting data from a database
(add, update, delete etc.).

• DCL - Data Control Language: Used to control access to the database and therefore
essential for the security system.

In most implementations of SQL functions from other programming languages (if-clauses,
iterations etc.) have been added. Some SQL-versions, such as Oracle's PL/SQL, can therefore be
seen as independent programming languages.

Databases

http://www.gitta.info - Version from: 12.7.2007 99

4.1.2 Data Definition (DDL)
In SQL the terms table, row and column are synonyms for relation, tuple and attribute. To create a
new relation scheme in the database we start with the create table -command. Together with
the creation we must provide the relations attributes and their domains (eg. number, char or date).
Additional we can define other constraints, checks and keys etc. The keyword NOT NULL tells the
system that this attribute cannot be empty. Primary keys are declared using a special "table
constraint"-clause .

Code-Beispiel: Create Table

This example shows how a new table is created in SQL. In the intermediate lesson we take a
closer look at all the SQL statements. For the moment you don't have to understand these
statements in detail.

Databases

http://www.gitta.info - Version from: 12.7.2007 100

4.1.3 Data Manipulation (DML)
There are two sorts of data manipulation commands in SQL. The first type are only used for
database queries and do not alter the tables. The second type are used for adding, updating or
deleting values in a database.
We will take a closer look at the different data manipulation commands in the following units.

• Basic database queries [Link to Page]

• SQL Insert, Delete and Update [Link to Page]

Databases

http://www.gitta.info - Version from: 12.7.2007 101

4.1.4 Data control (DCL)
Data control commands in SQL control access privileges and security issues of a database system
or parts of it. These commands are closely related to the DBMS (Database Management System)
and can therefore vary in different SQL implementations.
Some typical commands are:

• GRANT - give user access privileges to a database

• DENY - deny user access

• REVOKE withdraws access privileges given with the GRANT or taken with the DENY
command

Since these commands depend on the actual database management system (DBMS), we will not
cover DCL in this module.

Databases

http://www.gitta.info - Version from: 12.7.2007 102

4.2 Basic database queries
In this Unit we will take a closer look at how to do database queries using SQL.

Databases

http://www.gitta.info - Version from: 12.7.2007 103

4.2.1 SELECT-FROM-WHERE clause
In languages like SQL data from a certain domain (FROM) that match some conditions (WHERE)
are selected and presented (SELECT). The result can be seen as a new relation.
The syntax of a basic SQL query is:
SELECT <select-list>
FROM <from-list>
WHERE <condition>
In this syntax the...

• <select-list> contains the names of the attributes (columns) values to be returned.

• <from-list> is the list of the relations (tables) used for the query.

• <condition> is an expression that identifies the tuples that we are looking for.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

We saw the basic statements that are needed for making queries with SQL. Of course there are
extensions which allow more specific or more flexible queries.
These extensions include:

• multiple conditions (in boolean AND/OR combination)

• complex conditions (subqueries, joins etc.)

• pattern matching and arithmetical operators

• non-relational functions (sort, group, aggregate)

• set operators (union, intersect, minus)

Databases

http://www.gitta.info - Version from: 12.7.2007 104

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic1b.swf

4.2.2 Multiple conditions
In SQL it is possible to have multiple conditions and combine them with boolean operators (AND,
OR). For negating a condition the NOT operator is used.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 105

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic2.swf

4.2.3 Complex conditions

Nested queries
Conditions are usually made of an attribute, a value and an operator that forms the condition (eg.
Name="John"). But the values themselves don't have to be constants, they can be the result of
another sub-query. We then talk about nested queries. Using the IN-operator nested queries can
be as deep as necessary.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Comparison operators
SQL supports different comparison operators like ==,<,>,<>,<=,>=,between etc. If an
operator is used to compare an attribute with a constant, we talk about restriction. If the operator is
used to compare two attributes, then we talk about a join. With joins, data from different relations
can be compared and combined. Of course only attributes with the same domain (value range) can
be compared.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

If in the SELECT-clause a star (*) instead of an attribute list is used, then all attributes are
displayed.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 106

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic3.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic4.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic5.swf

4.2.4 Pattern matching and arithmetical operators

Pattern matching using LIKE
The LIKE condition allows you to use wildcards in the WHERE clause of an SQL statement. This
allows pattern matching.
The patterns that you can choose from are:

• "%" allows you to match any string of any length (including zero length)

• "_" allows you to match on a single character

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Arithmetical operators
The arithmetical standard operators for addition (+), subtraction (-), multiplication (*) and division (/)
can all be used for numerical constant or for attributes with a numerical domain.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

In the above example the result is a relation with three attributes. The third attribute is named
"Usury" since "Price/Size" is not a good name and stands for the price per unit. We define that if it
lies over 15, it is overpriced ("Usury").

Databases

http://www.gitta.info - Version from: 12.7.2007 107

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic6.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic7.swf

4.2.5 Non-relational constructs

ORDER BY clause
SQL contains some operators that have nothing to do with relational algebra. For example an
entity per definition does not have an order. Nevertheless in SQL you can order your tables using
the ORDER BY clause. Using the keywords ASC and DESC the sorting can either be ascending or
descending.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

In this example all customers are sorted in ascending order according to their names and as a
second sort parameter in descending order according to their surname. The ASC keyword is
default and could therefore be omitted.

GROUP BY clause
Grouping methods are used to form a subset of tuples of a relation according to certain criteria.
These subsets can then be used to calculate statistical parameters such as average, sum etc. A
certain value of an attribute serves a grouping criteria.
The group functions that SQL usually offers are the following:

• min returns the smallest value ignoring null values

• max returns the largest value ignoring null values

• sum returns the sum of all values ignoring null values

• count returns the number of rows

• avg returns average value ignoring null values

• stdev returns the standard deviation ignoring null values

• varriance returns the variance ignoring null values

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

In this query we want to find the customers that spent more than 250 SFR for all their small
advertisings (a small add is an add that costs less than 300 SFR). In a first step A004 is sorted out
because it is not a small add (price is over 300 SFR). The remaining tuples are grouped by
customer and those with a sum of over 250 SFR are selected.

Databases

http://www.gitta.info - Version from: 12.7.2007 108

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic8.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic9.swf

4.2.6 Set operators
Set operators are used to connect different queries and produce a resulting relation. Of course
these set operations are only allowed if the attributes match (eg. the domain or the number of
attributes etc.). The following set operators are used to join together sets of tuples. They might
already be known from the algebra of sets.

• union produces a union of different sets

• intersect produces an intersection of different sets.

• minus subtracts one set from another one.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

This query is used to find all names of customers who have a magazine subscription and who have
placed an advertising in this magazine.

Databases

http://www.gitta.info - Version from: 12.7.2007 109

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic10.swf

4.2.7 Usage of SQL
This flash-animation (click on link) should allow you to exercise all kinds of database queries.
To start the animation, klick on the graphic

Flash-Animation

Databases

http://www.gitta.info - Version from: 12.7.2007 110

4.2.8 atabase queries

Setup Information for Tutors:Discussion topics 'Datenbankanfragen' und 'SQL Probleme'
einrichten

This self assessment should give you the possibility to test different SQL queries and get to know
them more in depth. We use the following sample database
[http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html] (please leave this overview open during the
exercise).
Find the correct solution tables for the following SQL queries. Put your solutions (either Word or
PDF format) on the discussion board and check the other solutions.
You are encouraged to comment on other postings or to ask questions using the discussion board.
Please do not email the tutor directly so that others can also benefit from your questions and the
tutoräs answer.

SQL Anfragen

•

•

•

•

•

•

Databases

http://www.gitta.info - Version from: 12.7.2007 111

http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html

Database queries using WebSQL
To do this exercise install the open source data base MySQL [http://www.mysql.com] with the
PHP-administrationtool phpMyAdmin [http://www.phpmyadmin.net/home_page/index.php] . Here
[http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html] you can see how the database and the
queries could look like.
The goal of this self assessment is that you are able to form SQL queries that answer the
questions below. Write a report where you explain your queries and comment on the solutions and
put this document on the discussion board. If you have any questions please post them also on the
discussion board. Of course you are welcome to check the other students solutions, comment on
them or answer questions from other students.

Some remarks about the WebSQL interface

• Do not use a semicolon at the end of a SQL query.

• On the bottom left you can reset the database to its original state.

• Please contact your tutor and not the IFI for technical questions.

Aufgaben

• Select the names of all employees and sort them in descending order (Z to A).

• Find the surnames of all employees who live in Dübendorf and earn more than 30'000 Fr.

• Select all children whose parents are employees and live in Zurich. Sort the result by birth
date.

• Find the total amount of time that is spent on all projects in the research (Forschung)
department. Use one query only!

• How many children has the manager of the administration (Verwaltung) department?

• Find projects of Zurich where the total amount of work is over 50 hours?

• Create your own SQL query and post the query together with the solution on the discussion
board.

• Solve some queries that other students have posted.

Databases

http://www.gitta.info - Version from: 12.7.2007 112

http://www.mysql.com
http://www.phpmyadmin.net/home_page/index.php
http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html

4.3 SQL Insert, Delete and Update
To keep a database accurate we have to be able to not only create and delete tables but to also
modify the content. In SQL this is done with the commands INSERT, DELETE and UPDATE.

Databases

http://www.gitta.info - Version from: 12.7.2007 113

4.3.1 Inserting tuples
In its most basic form the insert-command adds a tuple to an existing table.
The syntax is:
INSERT INTO Tablename (Attributelist)
VALUES (Valuelist);
Please note that the attributelist can be omitted if a complete tuple is inserted.

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 114

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_insert.swf

4.3.2 Deleting tuples
The delete-command removes one or more rows (tuples) of a table (relation). The WHERE-clause
specifies which tuples have to be deleted. If it is missing, all tuples are deleted!
The syntax is:
DELETE FROM Tablename
WHERE Condition;

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 115

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_delete.swf

4.3.3 Updating tuples
The update-command is used to change one or more attribute values of existing tuples. The
WHERE-clause specifies which tuples should be updated. The SET-clause specifies the new
values.
The syntax is:
UPDATE Tablename
SET Attributevalues
WHERE Condition;

Only pictures can be viewed in the PDF version! For Flash etc. see online version.
Only screenshots of animations will be displayed. [link]

Databases

http://www.gitta.info - Version from: 12.7.2007 116

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_update.swf

4.4 WebSQL exercise
To do this exercise install the open source data base MySQL [http://www.mysql.com] with the
PHP-administrationtool phpMyAdmin [http://www.phpmyadmin.net/home_page/index.php] .
This exercise will help you to understand the commands INSERT , DELETE and UPDATE . Please
refer to the last unit basic queries [Link to lesson unit_BasicQueries.html] for more information about
WebSQL and the sample database. For technical help please contact your tutor.
The goal of this self assessment is that you are able to form SQL queries that answer the
questions below. Write a report where you explain your queries and comment on the solutions and
put this document on the discussion board. If you have any questions please post them on the
discussion board. Of course you are welcome to check the other students solutions, comment on
them or answer questions from other students.

Databases

http://www.gitta.info - Version from: 12.7.2007 117

http://www.mysql.com
http://www.phpmyadmin.net/home_page/index.php

4.4.1 Description of an Exercise
Work with the following database example [http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html] .
The goal of this self assessment is that you are able to form SQL queries that answer the
questions below. Write a report where you explain your queries and comment on the solutions and
put this document on the discussion board.
If you have any questions please post them also on the discussion board. Of course you are
welcome to check the other students solutions, comment on them or answer questions from other
students.

Exercises

• You have been hired by a company (represented in the sample database
[http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html]) and have to add yourself in the table
employee. Add at least someone of your family in the according table. Also you should add
some hours of work to one of the projects.
Remark: You don't have to add your birth date since the date format may be a bit
complicated!

• Select the columns you added in the different tables.

• Project 20 has been finished. Please delete all entries related to project 20.

• Beate Tell leaves the company. Her position is taken over by Sonja Maradona. Please make
sure that these changes are made correctly in your company database.

• All employees who's boss is Boris Frisch get a wage raise of 10'000 Fr.

• Present some other typical database changes (and their solutions) that might have to be
done in this company.

Databases

http://www.gitta.info - Version from: 12.7.2007 118

http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html
http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html

4.5 Summary
SQL stands for "Structured Query Language" and is a language to communicate with relational
and object oriented databases. With SQL new tables (relations, schemes) can be created, altered
and deleted using the commands CREATE TABLE , ALTERTABLE and DROP TABLE . This part of
SQL is known as the Data Definition Language (DML). More important in the daily use of SQL are
the data query and manipulation (DML) commands. These commands allow you to INSERT,
DELETE and UPDATE values in the database. SQL is also used to control access restrictions to
the database or to parts of it.

Databases

http://www.gitta.info - Version from: 12.7.2007 119

4.6 Recommended Reading
• ELMASRI, R., NAVATHE, S.B., 1994. Fundamentals of Database Systems. 2nd. Redwood

City, California: Addison-Wesley.
Introduction to databases and SQL.

Databases

http://www.gitta.info - Version from: 12.7.2007 120

4.7 Bibliography
• ELMASRI, R., NAVATHE, S.B., 1994. Fundamentals of Database Systems. 2nd. Redwood

City, California: Addison-Wesley.

Databases

http://www.gitta.info - Version from: 12.7.2007 121

	Databases
	Content
	1. Introduction DBS
	1.1 Definition of Terms
	1.1.1 Data vs. Information
	1.1.2 Components IS

	1.2 Characteristics
	1.2.1 Concurrent Use
	1.2.2 Structured Data
	1.2.3 Separation of Data and Applications
	1.2.4 Data Integrity
	1.2.5 Transactions
	1.2.6 Data Persistence
	1.2.7 Data Views

	1.3 Example Applications
	1.3.1 Bank Accounts
	1.3.2 Timetables
	1.3.3 Library Catalogue
	1.3.4 Geodata-Warehouse
	1.3.5 Exercise

	1.4 Advantages and Disadvantages
	1.4.1 Vergleich
	1.4.2 Advantages of a DBMS
	1.4.3 Disadvantages of a DBMS

	1.5 Tasks
	1.6 Summary
	1.7 Recommended Reading
	1.8 Glossary
	1.9 Bibliography

	2. DBS: Concepts and Architectures
	2.1 DB-Models, Schemes and Instances
	2.1.1 Database Models
	2.1.2 Schemes and Instances
	2.1.3 DB-Models vs. Spatial Models

	2.2 DBMS-Architecture
	2.2.1 3-Schemes Architecture
	2.2.2 Data Independence

	2.3 Languages and Interfaces
	2.3.1 Database Languages
	2.3.2 Database Interfaces
	2.3.3 User Interfaces

	2.4 Tasks
	2.5 Exercise Data Independence
	2.6 Summary
	2.7 Recommended Reading
	2.8 Glossary
	2.9 Bibliography

	3. Relationales Datenmodell
	3.1 Konzepte
	3.1.1 Organisation
	3.1.2 Definitionen

	3.2 Abbildung ER-Schema
	3.2.1 ERM concepts
	3.2.2 Rule 1
	3.2.3 Rule 2
	3.2.4 Rule 3
	3.2.5 Rule 4
	3.2.6 Rule 5
	3.2.7 Rule 6
	3.2.8 Rule 7
	3.2.9 Rule 8
	3.2.10 Anwendung der Regeln
	3.2.11 Umwandlungsübung

	3.3 Data integrity
	3.3.1 Schlüsselintegrität
	3.3.2 Gegenstandsintegrität
	3.3.3 Referentielle Integrität
	3.3.4 Integritätsgefährdung

	3.4 Normalisierung
	3.4.1 Dependencies
	3.4.2 First normal form (1NF)
	3.4.3 Second normal form (2NF)
	3.4.4 Third normal form (3NF)
	3.4.5 Exercise Normalisation
	3.4.6 Unit-Zusammenfassung

	3.5 Summary
	3.6 Recommended Reading
	3.7 Glossary
	3.8 Bibliography

	4. Anfragesprache SQL
	4.1 SQL Overview
	4.1.1 SQL Concepts
	4.1.2 Data Definition (DDL)
	4.1.3 Data Manipulation (DML)
	4.1.4 Data control (DCL)

	4.2 Basic database queries
	4.2.1 Select-From-Where
	4.2.2 Multiple conditions
	4.2.3 Complex conditions
	4.2.4 Arithmetische Operatoren
	4.2.5 Non-relational constructs
	4.2.6 Set operators
	4.2.7 Usage of SQL
	4.2.8 atabase queries

	4.3 SQL Insert, Delete and Update
	4.3.1 Inserting tuples
	4.3.2 Deleting tuples
	4.3.3 Updating tuples

	4.4 WebSQL exercise
	4.4.1 Description of an Exercise

	4.5 Summary
	4.6 Recommended Reading
	4.7 Bibliography

